Канальцевая реабсорбция и транспорт основных минеральных веществ. Регуляция канальцевой реабсорбции. Регуляция реабсорбции воды в дистальных канальцах Путем активного транспорта реабсорбируются следующие вещества

Первичная моча, проходя по канальцах и уборочных трубочках, перед тем как превратиться в конечную мочу, претерпевает значительные изменения. Разница состоит не только в ее количестве (с 180 л остается 1-1,5 л), но и качества. Некоторые вещества, нужные организму, полностью исчезают из мочи или их становится гораздо меньше. Происходит процесс реабсорбции. Концентрация других веществ во много раз увеличивается: они концентрируются при реабсорбции воды. Еще другие вещества, которых вообще не было в первичной мочи,
появляются в конечной. Это происходит в результате их секреции.
Процессы реабсорбции могут быть активными или пассивными. Для осуществления активного процесса необходимо, чтобы были специфические транспортные системы и энергия. Пассивные процессы происходят, как правило, без затраты энергии по законам физики и химии.
Канальцевая реабсорбция происходит во всех отделах, но ее механизм в разных частях неодинакова. Условно можно выделить С отделы: проксимальный извитой каналец, петля нефрона и дистальный извитой каналец С уборочной трубочкой.
В проксимальных извитых канальцах полностью реабсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы. В этом же отделе реабсорбируется около 2/3 воды и неорганических солей Na +, К + Са2 +, Mg2 +, Cl-, НС07, т.е. вещества, которые нужны организму для его деятельности. Механизм реабсорбции главным образом прямо или косвенно связан с реабсорбцией Na +.
Реабсорбция натрия. Большая часть Na + реабсорбируется против градиента концентрации за счет энергии АТФ. Реабсорбция Na + осуществляется в 3 этапа: перенос иона через апикальную мембрану эпителиальных клеток канальцев, транспортировки в базальной или латеральной мембраны и перенос через указанные мембраны в межклеточную жидкость и в кровь. Основной движущей силой реабсорбции является перенос Na + с помощью Na +, К +-АТФ-азы
через базолатерального мембрану. Это обеспечивает постоянное отток ионов с кдитин. Вследствие этого Na + по градиенту концентрации с помощью специальных образований эндоплазматического ретикулума поступает к мембранам, возвращенных в межклеточной среды.
Вследствие этого постоянно действующего конвейера концентрация ионов внутри клетки и особенно вблизи апикальной мембраны становится гораздо ниже, чем с другой ее стороны, это способствует пассивному поступлению Na + в клетку по ионному градиенту. Таким образом,
2 этапа натриевой реабсорбции клетками канальцев являются пассивными и только один, конечный, требует затрат энергии. Кроме того, часть Na + реабсорбируется пассивно по межклеточных промежутках вместе с водой.
Глюкоза. Глюкоза реабсорбируется вместе с транспортом Na + В апикальной мембране клеток есть специальные транспортеры. Это белки
3 молекулярной массой 320 000, которые в начальных отделах проксимального канальца переносят друг Na + и одну молекулу глюкозы (постепенное уменьшение концентрации глюкозы в моче приводит к тому, что в следующей области канальца для переноса одной молекулы глюкозы используется уже два Na +). Движущей силой этого процесса является также электрохимический градиент Na + На противоположной стороне клетки комплекс Na - глюкоза - переносчик распадается на три элемента. Вследствие этого освобожден переносчик возвращается на свое прежнее место и снова приобретает способность переносить новые комплексы Na + и глюкозы. В клетке концентрация глюкозы увеличивается, благодаря чему образуется градиент концентрации, который направляет его в базально-латеральных мембран клетки и обеспечивает выход в межклеточную жидкость. Отсюда глюкоза поступает в кровеносные капилляры и возвращается в общий кровоток. Апикальная мембрана не пропускает глюкозу обратно в просвет канальца. Транспортные переносчики глюкозы содержатся лишь в проксимальном отделе канальцев, поэтому глюкоза реабсорбируется только здесь.
В норме при обычном уровне глюкозы в крови, а следовательно и концентрации ее в первичной мочи, реабсорбируется вся глюкоза. Однако при повышении уровня глюкозы в крови более 10 ммоль / л (около 1,8 г / л) мощность транспортных систем становится недостаточной для реабсорбции.
Первые следы нереабсорбованои глюкозы в конечной моче обнаруживаются при превышении его концентрации в крови. Чем выше концентрация глюкозы в крови, тем большее количество нереабсорбованои глюкозы.
До концентрации ее 3,5 г / л это увеличение еще не прямо пропорционально, поскольку в процесс еще не включается часть транспортеров. Но, начиная с уровня 3,5 г / л, выведение глюкозы с мочой становится лрямо пропорционален концентрации ее в крови. У мужчин полная нагрузка системы реабсорбции наблюдается при поступлении 2,08 ммоль / мин (375 мг / мин) глюкозы, а у женщин-1, 68 ммоль / мин (303 мг / мин) из расчета на 1,73 м2 поверхности тела.
При неушкодж? Них почках появление глюкозы в моче, например при сахарном диабете, является следствием превышения пороговой концентрации (10 ммоль / л) глюкозы в крови.
Аминокислоты. Реабсорбция аминокислот происходит по такому же механизму, как и реабсорбция глюкозы. Полная реабсорбция аминокислот происходит уже в начальных отделах проксимальных канальцев. Этот процесс таксйк связан с активной реабсорбцией Na + через апикальную мембрану клеток. Выявлено 4 типа транспортных систем: а) для основных б) для кислых в) для гидрофильных г) для гидрофобных аминокислот. С клетки аминокислоты пассивно по градиенту концентрации проходят через базальную мембрану в межклеточную жидкость, а оттуда - в кровь. Появление аминокислот в моче может быть следствием нарушения транспортных систем или очень высокой концентрации его в крови. В последнем случае может проявляться эффект, который по механизму напоминает глюкозурию - перегрузка транспортных систем. Иногда наблюдается конкуренция кислот одного типа за общий переносчик.
Белки. Механизм реабсорбции белков значительно отличается от механизма реабсорбции описанных соединений. Попадая в первичную 0, ечу, небольшое количество белков в норме почти полностью реабсорбируется путем пиноцитоза. В цитоплазме клеток проксимальных канальцев белки распадаются при участии лизосомальных ферментов. Аминокислоты, которые образуются, по градиенту концентрации из клетки поступают в межклеточную жидкость, а оттуда - в кровеносные капилляры. Таким путем может реабсорбуватися до 30 мг белка за 1 мин. При повреждении клубочков в фильтрат попадает больше белков и часть может поступать в мочу (протеинурия).
Реабсорбция воды. Процессы реабсорбции воды происходит во всех отделах нефрона. Но механизмы реабсорбции в различных отделах разные. В проксимальных извитых канальцах реабсорбируется около% воды. Около 15% первичной мочи реабсорбируется в петле нефрона и 15%-в дистальных извитых канальцах и собирательных трубочках. В конечной мочи, как правило, остается только 1% воды первичного фильтрата. Причем в первых двух отделах количество реабсорбованои воды мало зависит от водной нагрузки организма и почти не регулируется. В дистальных отделах реабсорбция регулируется в зависимости от потребности организма: вода, которая попала сюда, может задерживаться в организме или выводиться с мочой.
В основе реабсорбции воды в проксимальных канальцах лежат процессы осмоса. Вода реабсорбируется вслед за ионами. Основным ионом, обеспечивающим пассивное всасывание воды, является Na +. Реабсорбция других веществ (углеводов, аминокислот и др.)., Которая осуществляется в этих отделах нефрона, также способствует всасыванию воды.
Реабсорбция воды и электролитов в петле нефрона (поворотно-протипоточний механизм). Вследствие указанных изменений в петлю нефрона поступает моча, которая является изотоническим по окружающей межклеточной жидкости. Механизм реабсорбции воды и Na + и Сl-в данном участке нефрона существенно отличается от такового в других отделах. Здесь вода реабсорбируется согласно механизму поворотно-протипоточнои системы. В ее основе лежат особенности расположения восходящих и нисходящих частей в непосредственной близости друг от друга. Параллельно с этим вглубь мозгового вещества идут уборочные трубочки и кровеносные капилляры.
Поворотно-протипоточний механизм определяется следующими функциональными характеристиками почек: а) глубже в мозговое вещество опускается петля нефрона, тем выше становится осмотическое давление окружающей межклеточной жидкости (с 300 мосм / л в корковом веществе почки в 1200-1450 мосм / л на верхушке сосочка) б) восходящий отдел не достаточно проницаем для воды в) эпителий восходящего отдела активно, с помощью транспортных систем, скачивает Na + и Си-г
Активное выкачивание NaCl эпителия восходящего отдела обусловливает повышение осмотического давления межклеточной жидкости. Благодаря этому вода диффундирует сюда нисходящего отдела петли нефрона. В начальный отдел нисходящей части поступает фильтрат, который имеет низкий осмотическое давление по сравнению с окружающей веществом. Моча по мере спуска по нисходящему отдела, отдавая воду, имеет постоянный осмотический градиент между фильтратом и межклеточной жидкостью. Поэтому вода оставляет фильтрат в области нисходящего колена, чем обеспечивается здесь реабсорбция около 15% объема первичной мочи. Кроме того, в формировании осмолярности фильтрата петли нефрона определенное значение принадлежит моче, которая может сюда попасть при повышении его концентрации в паренхиме почки.
В связи с выходом воды осмотическое давление мочи постепенно растет и достигает своего максимума в области поворота петли нефрона. Гиперосмотические моча поднимается по восходящему отдела, где, как указывалось выше, теряет Na + и С1-, которые выводятся благодаря активному функционированию транспортных систем. Поэтому в дистальные извитые канальцы фильтрат поступает даже гипоосмотическими (около 100-200 мосм / л). Таким образом, в нисходящем колене происходит процесс концентрирования мочи, а в восходящем - ее разведения.
Особенности функционирования отдельных нефронов во многом зависят от длины петли нефрона и выраженности нисходящего и восходящего отделов. Чем дольше петля (юкстамедулярни нефроны), то более выраженные процессы концентрации мочи.
В дистальные извитые канальцы и собирательные трубочки чаще поступает около 15% объема первичного фильтрата. Но в конечной моче, как правило, остается лишь 1% первичного фильтрата. В первых двух отделах количество реабсорбованои воды мало зависит от водной нагрузки организма и почти не регулируется (облигатная реабсорбция). В дистальных отделах реабсорбция регулируется с учетом потребностей организма: вода, поступившая сюда, может задерживаться в организме или выводиться с мочой (факультативная реабсорбция). Регулюетеся она гормонами, образование которых зависит от водного и ионного состояния организма.

Изучение функции почек начинается с проведения исследования общего анализа мочи.

Общий анализ мочи :

Цвет: в норме имеет все оттенки желтого цвета.

Прозрачность. В норме моча прозрачная, помутнение могут вызывать форменные элементы крови, эпителий, слизь, липиды, соли. Глюкоза и белки плазмы крови помутнения мочи не вызывают.

Относительная плотность утренней мочи в норме более 1018. На величину относительной плотности влияют присутствие белка (3-4 г/л повышает на 0,001) и глюкозы (2,7 г/л повышает на 0,001). Для более точной оценки концентрационной способности почек используется проба Зимницкого.

Реакция мочи — слабо кислая.

Белок — в норме не выявляется, либо выявляется в следовых количествах (до 0,033 г/л, или 10–30 мг в сутки).

Микроскопия осадка

Лейкоциты. В осадке нормальной мочи попадаются лишь единичные лейкоциты. Выделение большого количества их с мочой (8-10 и больше в поле зрения при большом увеличении) является патологией (лейкоцитурия).

Эритроциты.
Нахождение при микроскопическом исследовании мочевого осадка одного эритроцита на несколько полей зрения является нормой, если в каждом поле зрения 1 и более – это гематурия.

Микрогематурией считается обнаружение эритроцитов только при микроскопии осадка мочи, макрогематурия сопровождается видимым невооруженным глазом изменением цвета мочи.

При констатировании у больного макро- или микрогематурии следует, прежде всего, решить вопрос о том, является она почечной или внепочечной (примешивается к моче в мочевыводящих путях). Этот вопрос решается на основании следующих данных:

    Цвет крови при почечной гематурии обычно буровато-красный, а при внепочечной - ярко-красный.

    Наличие в моче сгустков крови чаще всего говорит о том, что кровь происходит из мочевого пузыря или из лоханок.

    Наличие в мочевом осадке выщелоченных, т.е. лишенных гемоглобина, эритроцитов наблюдается чаще при почечной гематурии.

    Если при незначительном количестве эритроцитов (10-20 в поле зрения) количество белка в моче превышает 1 г/л, то гематурия, по всей вероятности, почечная. Наоборот, когда при значительном количестве эритроцитов (50-100 и более в поле зрения) концентрация белка ниже 1 г/л и в осадке отсутствуют цилиндры, гематурию следует признать внепочечной.

    Несомненным доказательством почечного характера гематурии является наличие в мочевом осадке эритроцитарных цилиндров. Так как цилиндры представляют собой слепки просветов мочевых канальцев, наличие их с несомненностью говорит о том, что эритроциты происходят из почек.

Наконец, при решении вопроса о происхождении эритроцитов следует учитывать и другие симптомы заболевания почек или мочевыводящих путей.

Почечная гематурия встречается:

          При остром гломерулонефрите.

          При обострении хронического гломерулонефрита.

          При застойных почках у больных с недостаточностью сердца.

          При инфаркте почки (характерным является возникновение внезапной гематурии, обычно макроскопической, одновременно с болью в области почки).

          При злокачественном новообразовании почки

          При кистозном перерождении почек.

          При туберкулезе почки.

          При заболеваниях, характеризующихся кровоточивостью (гемофилия, эссенциальная тромбопения, острый лейкоз и др.). Как правило, при этом наблюдаются кровотечения и из других органов.

          При тяжелых острых инфекционных заболеваниях (оспа, скарлатина, тифы, малярия, сепсис) вследствие токсического повреждения сосудов почек.

          При травматических повреждениях почек.

Эпителиальные клетки — в норме в небольшом количестве клетки плоского эпителия, это эпителий, выстилающий уретру.

Цилиндры — могут встречаться единичные гиалиновые цилиндры.

Проба Нечипоренко — количественная оценка числа лейкоцитов, эритроцитов, цилиндров в моче.

Бактериологическое исследование мочи — При обычном сборе не исключено попадание микроорганизмов с кожных покровов и начальной части уретры.

Трехстаканная проба

Эта проба была предложена для уточнения локализации источника гематурии и лейкоцитурии (почки или мочевыводящие пути). Считают, что при поражении уретры патологический осадок (лейкоциты, эритроциты) появляются в первой порции мочи. Для поражения почек, чашечно-лоханочной системы или мочеточников характерно появление патологического осадка во всех трех порциях мочи. При локализации патологического процесса в пришеечной части мочевого пузыря или у мужчин в предстательной железе гематурия или лейкоцитурия обнаруживается, главным образом, в третьей порции мочи.

Хотя трехстаканная проба проста и не обременительна для больного, ее результаты имеют лишь относительное значение для дифференциальной диагностики ренальной и постренальной гематурии и лейкоцитурии. Например, в некоторых случаях при поражении мочевого пузыря (постоянно кровоточащая опухоль и др.) гематурия может выявляться во всех трех порциях мочи, а при поражении мочеиспускательного канала - не в первой, а в третьей порции (терминальная гематурия) и т. д.

Функциональные исследования почек

Оценка клубочковой фильтрации

по клиренсу инулина признается «золотым стандартом» для определения почечной функции. Но метод этот друдоёмкий и технически не всегда выполнимый, поэтому в клинической практике наиболее часто используется метод определения СКФ по клиренсу эндогенного креатинина, который называют пробой Реберга-Тареева .

Есть разные вариации этого метода: исследование проводится в течение 1, 2, 6 часов, либо в течение суток (все это время производится сбор мочи). Наиболее достоверный результат получается при исследовании суточной мочи.

Расчет СКФ проводится по формуле:

C=(U×V мин)/P,

где C - клиренс вещества (мл/мин), U - концентрация исследуемого вещества в моче, Р - концентрация того же вещества в крови, V мин - минутный диурез (мл/мин).

СКФ в норме составляет 80-120 мл/мин. Повышается в физиологических условиях при беременности, а также при других состояниях, сопровождающихся увеличением почечного кровотока (при повышении сердечного выброса – гипертиреоз, анемия и др.) Снижение возможно при поражении клубочков, а также при снижении кровотока через почки (гиповолемия, застойная сердечная недостаточность и др.)

Оценка канальцевой реабсорбции

КР=(СКФ — V мин)/СКФ×100%,

где КР - канальцевая реабсорбция; СКФ - скорость клубочковой фи­льтрации; V мин – минутный диурез.

В норме канальцевая реабсорбция составляет 98- 99%, однако при большой водной нагрузке даже у здоро­вых людей может уменьшаться до 94-92%. Снижение канальцевой реабсорбции рано наступает при пиелонефрите, гидронефрозе, поликистозе. В то же время при заболеваниях почек с преимущественным поражением клубочков канальцевая реабсорбция уменьшается позже, чем клубочковая фильтрация.

Проба Зимницкого дает возможность определить динамику количества отделяемой мочи и ее относительной плотности в течение суток.

В норме (при сохраненной способности почек к осмотическому разведению и концентрированию мочи) на протяжении суток отмечаются:

    разница между максимальными и минимальными показателями должна составлять не менее 10 единиц (например, от 1006 до 1020 или от 1010 до 1026 и т. д.);

    не менее чем двукратное преобладание дневного диуреза над ночным.

    В молодом возрасте максимальная относительная плотность, характеризующая способность почек концентрировать мочу, должна быть не ниже 1,025, а у лиц старше 45–50 лет - не ниже 1,018.

    Минимальная относительная плотность, у здорового человека должна быть ниже осмотической концентрации безбелковой плазмы, равной 1,010–1,012.

Причинами нарушения концентрационной способности почек являются:

    Уменьшение числа функционирующих нефронов у больных с хронической почечной недостаточностью (ХПН) .

    Воспалительный отек интерстициальной ткани мозгового слоя почек и утолщение стенок собирательных трубок (например, при хроническом пиелонефрите, тубулоинтерстициальном нефрите и др.

    Гемодинамический отек интерстициальной ткани почек, например при застойной недостаточности кровообращения.

    Несахарный диабет с угнетением секреции АДГ или взаимодействия АДГ с почечными рецепторами.

    Прием осмотических диуретиков (концентрированный раствор глюкозы, мочевина и др.).

Причинами нарушения способности почек к разведению являются:

    уменьшение потребления жидкости, погодные условия, способствующие усиленному потоотделению;

    патологические состояние, сопровождающиеся снижением почечной перфузии при сохраненной концентрационной способности почек (застойная сердечная недостаточность, начальные стадии острого гломерулонефрита) и др.;

    заболевания и синдромы, сопровождающиеся выраженной протеинурией (нефротический синдром);

    сахарный диабет, протекающий с выраженной глюкозурией;

    токсикоз беременных;

    состояния, сопровождающиеся внепочечными потерями воды (лихорадка, ожоговая болезнь, обильная рвота, диарея и.др.).

Изменения суточного диуреза.

У здорового человека в течение суток выводится примерно 70–80% выпитой жидкости. Увеличение диуреза больше 80% выпитой за сутки жидкости у больных с застойной недостаточностью кровообращения может свидетельствовать о начале схождения отеков, а уменьшение ниже 70% - об их нарастании.

Полиурия - это обильное отделение мочи (более 2000 мл за сутки). Полиурия может быть обусловлена многими причинами:

Олигурия – это уменьшение количества выделяемой за сутки мочи (менее 400-500 мл). Олигурия может быть обусловлена как внепочечными причинами (ограничение потребления жидкости, усиленное потоотделение, профузные поносы, неукротимая рвота, задержка жидкости в организме у больных с сердечной недостаточностью), так и нарушениями функции почек у пациентов с гломерулонефритом, пиелонефритом, уремией и т. п.).

Анурия - это резкое уменьшение (до 100 мл в сутки и меньше) или полное прекращение выделения мочи. Различают два вида анурии.

    Секреторная анурия обусловлена выраженным нарушением клубочковой фильтрации, что может наблюдаться при шоке, острой кровопотере, уремии. В первых двух случаях нарушения клубочковой фильтрации связаны преимущественно с резким падением фильтрационного давления в клубочках, в последнем случае с гибелью более 70–80% нефронов.

    Экскреторная анурия (ишурия) связана с нарушением отделения мочи по мочевыводящим путям.

Никтурия - это равенство или даже преобладание ночного диуреза над дневным.

Лучевые методы диагностики заболеваний почек

Ультразвуковое исследование почек- описание формы, размера, положения почек, соотношения коркового и мозгового вещества, выявление кист, камней и дополнительных образований в почечной ткани.

Экскреторная урография — для определения анатомического и функционального состояния почек, почечных лоханок, мочеточников, мочевого пузыря и наличия в них конкрементов. Сущность метода заключается во внутривенном струйном введении рентгеноконтрастного вещества (йодсодержащий концентрированные растворы урографина, йогексола и др.). Препарат вводят внутривенно струйно медленно (в течение 2–3 мин). Серия рентгенограмм, выполняется традиционно на 7-й, 15-й, 25-й мин от начала введения контраста, при необходимости (замедление выведения, задержка контраста в некоторых отделах МВП) делаются «отсроченные» снимки.

Радиоизотопная ренография

Для проведения радиоизотопной ренографии используют гиппуран меченный 131 I, 80% которого при внутривенном введениисекретируется в проксимальных отделах канальцев и 20% выводится путемфильтрации .

Пункционная биопсия почек с последующим гистоморфологическим исследованием пунктата с помощью оптической, электронной и иммунофлуоресцентной микроскопии получила в последние годы широкое распространение в связи уникальной информативностью, превышающей все остальные методы исследования.

Почки в человеческом теле выполняют ряд функций: это и регуляция объема крови и межклеточной жидкости, и удаление продуктов распада, и стабилизация кислотно-щелочного баланса, и регуляция водно-солевого равновесия и так далее. Все эти задачи решаются благодаря мочеобразованию. Канальцевая реабсорбция – один из этапов этого процесса.

Канальцевая реабсорбция

За сутки почки пропускают до 180 л первичной мочи. Эта жидкость из тела не выводится: так называемый фильтрат проходит сквозь канальцы, где практически вся жидкость всасывается, а необходимые для жизнедеятельности вещества – аминокислоты, микроэлементы, витамины, возвращаются в кровь. Продукты распада и обмена удаляются со вторичной мочой. Объем ее намного меньше – около 1,5 л за сутки.

Эффективность почки как органа во многом определяется эффективностью канальцевой реабсорбции. Чтобы представить себе механизм процесса, необходимо разобраться в строении – почечной единицы.

Строение нефрона

«Рабочая» клетка почки состоит из следующих частей.

  • Почечное тельце – клубочковая капсула, внутри расположены капилляры.
  • Проксимальный извитый каналец.
  • Петля Генле – складывается из нисходящей и восходящей части. Тонкая нисходящая располагается в мозговом веществе, изгибается под 180 градусов с тем, чтобы подняться в корковое вещество до уровня клубочка. Эта часть формирует восходящую тонкую и толстую части.
  • Дистальный извитый каналец.
  • Конечный отдел – короткий фрагмент, соединенный с собирательной трубкой.
  • Собирательная трубка – размещается в мозговом веществе, отводит вторичную мочу в почечную лоханку.

Общий принцип размещения таков: в корковом веществе размещаются почечные клубочки, проксимальный и дистальный канальцы, в мозговом – нисходящие и толстые восходящие части и собирательные трубки. Во внутреннем мозговом веществе остаются тонкие отделы, собирательные трубки.
На видео строение нефрона:

Механизм реабсорбции

Для осуществления канальцевой реабсорбции задействуются молекулярные механизмы, аналогичные перемещению молекул через плазматические мембраны: диффузия, эндоцитоз, пассивный и активный транспорт и так далее. Самый значимый – активный и пассивный транспорт.

Активный – проводится против электрохимического градиента. Для его реализации требуется энергия и специальные транспортные системы.

Рассматривают 2 вида активного транспорта:

  • Первично-активный – в ход идет энергия, выделяющаяся при расщеплении аденозинтрифосфорной кислоты. Таким образом перемещаются, например, ионы натрия, кальция, калия, водорода.
  • Вторично-активный – на перенос энергия не тратится. Движущей силой выступает разница в концентрации натрия в цитоплазме и просвете канальца.Переносчик обязательно включает в себя ион натрия. Таким способом через мембрану проходит глюкоза и аминокислоты. Разница в количестве натрия – меньше в цитоплазме, чем снаружи, объясняется выводом натрия в межклеточную жидкость с участием АТФ.

После преодоления мембраны комплекс расщепляется на переносчик – специальный белок, ион натрия и глюкозу. Переносчик возвращается в клетку, где готов присоединить следующий ион металла. Глюкоза же из межклеточной жидкости следует в капилляры и возвращается в кровоток. Реабсорбируется глюкоза только в проксимальном отделе, поскольку лишь здесь формируется требуемый переносчик.

Аминокислоты всасываются по аналогичной схеме. А вот процесс реабсорбции белка сложнее: белок поглощается путем пиноцитоза – захвата жидкости клеточной поверхностью, в клетке распадается на аминокислоты, а затем следует в межклеточную жидкость.

Пассивный транспорт – всасывание производится по электрохимическому градиенту и в поддержке не нуждается: например, всасывание ионов хлора в дистальном канальце. Возможно перемещение по концентрационному, электрохимическому, осмотическому градиентам.

На деле реабсорбция производится по схемам, включающим самые разные способы транспортировки. Причем в зависимости от участка нефрона абсорбироваться вещества могут по-разному или не поглощаться вовсе.

Например, вода усваивается в любом отделе нефрона, но разными методами:

  • около 40–45% воды всасывается в проксимальных канальцах по осмотическому механизму – вслед за ионами;
  • 25–28% воды поглощается в петле Генле по поворотно-протипоточному механизму;
  • в дистальных извитых канальцах поглощается до 25% воды. Причем если в двух предыдущих отделах поглощение воды производится вне зависимости от водной нагрузки, то в дистальных процесс регулируется: вода может выводиться со вторичной мочой или удерживаться.

Объем вторичной мочи достигает всего лишь 1% от первичного объема.
На видео процесс реабсорбции:

Движение реабсорбируемого вещества


Различают 2 метода перемещения реабсорбируемого вещества в межклеточную жидкость:

  • парацеллюрный – переход производится через одну мембрану между двумя плотно соединенными клетками. Это, например, диффузия, или перенос с растворителем, то есть, пассивный транспорт;
  • трансцеллюрный – «через клетку». Вещество преодолевает 2 мембраны: люминальную или апикальную, которая отделяет фильтрат в просвете канальца от клеточной цитоплазмы, и базолатеральную, выступающую барьером между интерстициальной жидкостью и цитоплазмой. Хотя бы один переход реализуется по механизму активного транспорта.

Виды

В разных отделах нефрона реализуются разные методы реабсорбции. Поэтому на практике часто используют разделение по особенностям работы:

  • проксимальный отдел – извитая часть проксимального канальца;
  • тонкий – части петли Генле: тонкая восходящая и нисходящая;
  • дистальный – дистальный извитый каналец, соединяющий и толстая восходящая часть петли Генле.

Проксимальная

Здесь поглощается до 2/3 воды, а также глюкоза, аминокислоты, белки, витамины, большое количество ионов кальция, калия, натрия, магния, хлора. Проксимальный каналец – основной поставщик глюкозы, аминокислот и белков в кровь, так что этот этап является обязательным и независим от нагрузки.

Схемы реабсорбции применяются разные, что определяется видом всасываемого вещества.

Глюкоза в проксимальном канальце поглощается практически полностью. Из просвета канальца в цитоплазму она следует через люминальную мембрану посредством контртранспорта. Это вторичный активный транспорт, для которого нужна энергия. Используется та, что выделяется при перемещении иона натрия по электрохимическому градиенту. Затем глюкоза проходит сквозь базолатеральную мембрану методом диффузии: глюкоза накапливается в клетке, что обеспечивает разницу в концентрации.

Энергия нужна при переходе сквозь люминальную мембрану, перенос через вторую мембрану энергетических затрат не требует. Соответственно, главным фактором поглощения глюкозы оказывается первично-активный транспорт натрия.

По такой же схеме реабсорбируются аминокислоты, сульфат, неорганический фосфат кальция, питательные органические вещества.

Низкомолекулярные белки оказываются в клетке посредством пиноцитоза и в клетке распадаются на аминокислоты и дипептиды. Этот механизм не обеспечивает 100% всасывания: часть белка остается в крови, а часть удаляется с мочой – до 20 г в сутки.

Слабые органические кислоты и слабые основания из-за низкой степени диссоциации реабсорбируются методом неионной диффузии. Вещества растворяются в липидном матриксе и поглощаются по концентрационному градиенту. Всасывание зависит от уровня pH: при его уменьшении диссоциация кислоты падает, а диссоциация оснований повышается. При высоком уровне pH увеличивается диссоциация кислот.

Эта особенность нашла применение при выводе ядовитых веществ: при отравлении в кровь вводят препараты, защелачивающие ее, что увеличивает степень диссоциации кислот и помогает вывести их с мочой.

Петля Генле

Если в проксимальном канальце ионы металлов и вода реабсорбируются практически в одинаковых долях, то в петле Генле всасывается в основном натрий и хлор. Воды же поглощается от 10 до 25%.

В петле Генле реализуется поворотно-протипоточный механизм, основанный на особенности расположения нисходящей и восходящей части. Нисходящая часть не поглощает натрий и хлор, но остается проницаемой для воды. Восходящая всасывает ионы, но для воды оказывается непроницаемой. В итоге всасывание хлорида натрия восходящей частью определяет степень поглощения воды нисходящей частью.

Первичный фильтрат попадает в начальную часть нисходящей петли, где осмотическое давление ниже по сравнению с давлением межклеточной жидкости. Моча спускается по петле, отдавая воду, но сохраняя ионы натрия и хлора.

Поскольку вода выводится, осмотическое давление в фильтрате растет и достигает максимального значения в поворотной точке. Затем моча следует по восходящему участку, сохраняя воду, но теряя ионы натрия и хлора. В дистальный каналец моча попадает гипоосмотическая – до 100–200 мосм/л.

По сути, в нисходящем отделе петли Генле моча концентрируется, а в восходящей – разводится.

На видео строение петли Гентле:

Дистальная

Дистальный каналец слабо пропускает воду, а органические вещества здесь вовсе не всасываются. В этом отделе производится дальнейшее разведение. В дистальный каналец попадает около 15% первичной мочи, а выводится около 1%.

По мере перемещения по дистальному канальцу она становится все более гиперосмотичной, поскольку здесь поглощаются в основном ионы и частично вода – не более 10%. Разведение продолжается в собирательных трубках, где и формируется конечная моча.

Особенностью работы этого сегмента является возможность регулировки процесса всасывания воды и ионов натрия. Для воды регулятором является антидиуретический гормон, а для натрия – альдостерон.

Норма

Для оценки функциональности почки используются различные параметры: биохимический состав крови и мочи, величина концентрационной способности, а также парциальные показатели. К последним и относят и показатели канальцевой реабсорбции.

Скорость клубочковой фильтрации – указывает на выделительные способности органа, это скорость фильтрации первичной мочи, не содержащей белок, через клубочковый фильтр.

Канальцевая реабсорбция указывает на всасывающие способности. Обе эти величины не постоянны и изменяются в течение суток.

Норма СКФ – 90–140 мл/мин. Наиболее высок ее показатель днем, снижается к вечеру, а утром находится на самом низком уровне. При физической нагрузке, потрясениях, почечной или сердечной недостаточности и других недугах СКФ падает. Может увеличиваться на начальных стадиях сахарного диабета и при гипертонии.

Канальцевая реабсорбция не измеряется непосредственно, а рассчитывается как разность между СКФ и минутным диурезом по формуле:

Р = (СКФ – Д) x 100 / СКФ, где,

  • СКФ – скорость клубочковой фильтрации;
  • Д – минутный диурез;
  • Р – канальцевая реабсорбция.

При снижении объема крови – операция, потеря крови, наблюдается повышение канальцевой реабсорбции в сторону роста. На фоне приема диуретиков, при некоторых почечных недугах – уменьшается.

Нормой для канальцевой реабсорбции является 95–99%. Отсюда и столь большая разница между объемом первичной мочи – до 180 л, и объемом вторичной – 1–1,5 л.

Для получения этих величин прибегают к пробе Реберга. С ее помощью вычисляют клиренс – коэффициент очищения эндогенного креатинина.По этому показателю вычисляют СКФ и величину канальцевой реабсорбции.

Пациент удерживается в лежачем положении на протяжении 1 часа. За это время собирается моча. Анализ проводится натощак.

Через полчаса из вены берут кровь.

Затем в моче и крови находят количество креатинина и вычисляют СКФ по формуле:

СКФ = М x Д / П, где

  • М – уровень креатинина в моче;
  • П – уровень вещества в плазме
  • Д – минутный объем мочи. Рассчитывается делением объема на время выделения.

По данным можно классифицировать степень повреждения почки:

  • Уменьшение скорости фильтрации до 40 мл/мин является признаком почечной недостаточности.
  • Уменьшение СКФ до 5–15 мл/мин свидетельствует о терминальной стадии недуга.
  • Уменьшение КР обычно следует после водной нагрузки.
  • Рост КР связан с уменьшением объема крови. Причиной может быть потеря крови, а также нефриты – при таком недуге повреждается клубочковый аппарат.

Нарушение канальцевой реабсорбции

Регуляция канальцевой реабсорбции

Кровообращение в почках выступает процессом относительно автономным. При изменениях АД от 90 до 190 мм. рт. ст. давление в почечных капиллярах удерживается на обычном уровне. Объясняется такая стабильность разницей в диаметре между приносящими и выносящими кровеносными сосудами.

Выделяют два наиболее значимых метода: миогенная ауторегуляция и гуморальная.

Миогенная – при росте АД стенки приносящих артериол сокращаются, то есть, в орган поступает меньший объем крови и давление падает. Сужение чаще всего вызывает ангиотензин II, таким же образом воздействуют тромбоксаны и лейкотриены. Сосудорасширяющими веществами выступают ацетилхолин, дофамин и так далее. В результате их действия нормализуется давление в клубочковых капиллярах с тем, чтобы удерживать нормальный уровень СКФ.

Гуморальная – то есть, при помощи гормонов. По сути, главным показателем канальцевой реабсорбции выступает уровень всасывания воды. Процесс этот можно разделить на 2 этапа: обязательный – тот, что проводится в проксимальных канальцах и независим от водной нагрузки, и зависимый – реализуется в дистальных канальцах и собирательных трубочках. Этот этап регулируется гормонами.

Главный среди них – вазопрессин, антидиуретический гормон. Он сохраняет воду, то есть, способствует задержке жидкости. Синтезируется гормон в ядрах гипоталамуса, перемещается в нейрогипофиз, а оттуда попадает в кровоток. В дистальных отделах имеются рецепторы к АДГ. Взаимодействие вазопрессина с рецепторами приводит к улучшению проницаемости мембран для воды, благодаря чему она поглощается лучше. При этом АДГ не только увеличивает проницаемость, но и определяет уровень проницаемости.

За счет разницы давлений в паренхиме и дистальном канальце вода из фильтрата остается в теле. Но на фоне низкой всасываемости ионов натрия диурез может оставаться высоким.

Всасывание ионов натрия регламентирует альдостерон – , а также натрийуретический гормон.

Альдестерон способствует канальцевой реабсорбции ионов и образуется при снижении уровня ионов натрия в плазме. Гормон регулирует создание всех требуемых для переноса натрия механизмов: канала апикальной мембраны, переносчика, составляющих натрий-калиевого насоса.

Особенно сильно его воздействие на участке собирательных трубочек. «Работает» гормон как в почках, так и в железах, и в ЖКТ, улучшая всасывание натрия. Также альдостерон регулирует чувствительность рецепторов к АДГ.

Альдостерон появляется и по другой причине. При снижении АД синтезируется ренин – вещество, контролирующее тонус сосудов. Под влиянием ренина аг-глобулин из крови трансформируется в ангиотензин I, а затем в ангиотензин II. Последний выступает сильнейшим сосудосуживающим веществом. Кроме того, он запускает выработку альдостерона, обуславливающего реабсорбцию ионов натрия, что вызывает задержку воды. Этот механизм – задержка воды и сужение сосудов, создает оптимальное АД и нормализует кровоток.

Натрийуретический гормон образуется в предсердии при его растяжении. Оказавшись в почках, вещество уменьшает реабсорбцию ионов натрия и воды. При этом количество воды, которое попадает во вторичную мочу увеличивается, что уменьшает общий объем крови, то есть, растяжение предсердий исчезает.

Кроме того, на уровень канальцевой реабсорбции оказывают воздействие и другие гормоны:

  • паратгормон – улучшает всасывание кальция;
  • тиреокальцийтонин – снижает уровень реабсорбции ионов этого металла;
  • адреналин – его влияние зависит от дозы: при малом количестве адреналин снижает СКФ фильтрацию, в большой дозе – здесь канальцевая реабсорбция повышена;
  • тироксин и соматропный гормон – усиливают диурез;
  • инсулин – улучшает поглощение ионов калия.

Механизм влияния разный. Так, пролактин повышает проницаемость клеточной мембраны для воды, а паратирин изменяет осмотический градиент интерстиция, тем самым влияя на осмотический транспорт воды.

Канальцевая реабсорбция – механизм, обуславливающий возвращение воды, микроэлементов и питательных веществ в кровь. Осуществляется возврат — реабсорбция, на всех участках нефрона, но по разным схемам.

Оглавление темы "Проксимальная реабсорбция натрия. Реабсорбция в дистальном канальце. Состав конечной мочи. Свойства мочи. Анализ мочи. Нормальный анализ мочи.":
1. Проксимальная реабсорбция натрия. Антипорт. Котранспорт. Реабсорбция глюкозы. Реабсорбция аминокислот. Симпорт.
2. Дистальная реабсорбция ионов и воды. Реабсорбция в дистальном канальце.
3. Противоточно-множительная канальцевая система почки. Действие вазопрессина на почку.
4. Противоточная сосудистая система мозгового вещества почки.

6. Регуляция реабсорбции ионов натрия. Альдостерон. Регуляция транспорта ионов кальция, фосфата, магния.
7. Канальцевая секреция. Регуляция канальцевой секреции. Секреция водородных ионов. Секреция ионов калия. Эффективный почечный плазмоток.
8. Состав конечной мочи. Свойства мочи. Суточный диурез. Анализ мочи. Нормальный анализ мочи. Норма анализа мочи.
9. Выведение мочи. Мочеиспускание. Опорожнение мочевого пузыря. Механизмы выведения мочи и мочеиспускания.
10. Экскреторная функция почек.

Регуляция канальцевой реабсорбции осуществляется как нервным, так и, в большей мере, гуморальным путем.

Нервные влияния реализуются преимущественно симпатическими проводниками и медиаторами через бета-адренорецепторы мембран клеток проксимальных и дистальных канальцев. Симпатические эффекты проявляются в виде активации процессов реабсорбции глюкозы, ионов натрия, воды и анионов фосфатов и осуществляются через систему вторичных посредников (аденилатциклаза - цАМФ). Нервная регуляция кровообращения в мозговом веществе почки увеличивает или уменьшает эффективность сосудистой противоточной системы и концентрирование мочи. Сосудистые эффекты нервной регуляции также опосредуются через внутри-почечные системы гуморальных регуляторов - ренин-ангиотензиновую, кининовую, простагландины и др.

Основным фактором регуляции реабсорбции воды в дистальных отделах нефрона является гормон вазопрессин , называвшийся ранее антидиуретическим гормоном. Этот гормон образуется в супраоптическом и паравен-трикулярных ядрах гипоталамуса, по аксонам нейронов транспортируется в нейрогипофиз, откуда и поступает в кровь. Влияние вазопрессина на проницаемость эпителия канальцев обусловлено наличием рецепторов к гормону, относящихся к V2-типу, на поверхности базолатеральной мембраны клеток эпителия. Образование гормон-рецепторного комплекса влечет за собой через посредство GS-белка и гуанилового нуклеотида активацию аденилатциклазы и образование цАМФ, активацию синтеза и встраивания аквапоринов 2-го типа («водных каналов ») в апикальную мембрану клеток эпителия собирательных трубочек. Перестройка ультраструктур мембраны и цитоплазмы клетки ведет к образованию внутриклеточных специализированных структур, переносящих большие потоки воды по осмотическому градиенту от апикальной к базолатеральной мембране, не позволяя транспортируемой воде смешиваться с цитоплазмой и препятствуя набуханию клетки. Такой трансцеллюлярный транспорт воды через клетки эпителия реализуется вазопрессином в собирательных трубочках. Кроме того, в дистальных канальцах вазопрессин обусловливает активацию и выход из клеток гиалуронидаз, вызывающих расщепление гликозаминогликанов основного межклеточного вещества, тем самым способствуя межклеточному пассивному транспорту воды по осмотическому градиенту.

Таблица 14.1. Основные гуморальные влияния на процессы мочеобразования

Канальцевая реабсорбция воды регулируется и другими гормонами (табл. 14.1). По механизму действия все гормоны, регулирующие реабсорбцию воды , делятся на шесть групп:
повышающие проницаемость мембран дистальных отделов нефрона для воды (вазопрессин, пролактин, хорионический гонадотропин);
меняющие чувствительность клеточных рецепторов к вазопрессину (паратирин, кальцитонин, кальцитриол, простагландины, альдостерон );
меняющие осмотический градиент интерстиция мозгового слоя почки и, соответственно, пассивный осмотический транспорт воды (паратирин, кальцитриол, тиреоидные гормоны, инсулин, вазопрессин);
меняющие активный транспорт натрия и хлорида , а за счет этого и пассивный транспорт воды (альдостерон, вазопрессин, атриопептид, прогестерон, глюкагон, кальцитонин, простагландины);
повышающие осмотическое давление канальцевой мочи за счет нере-абсорбированных осмотически активных веществ, например глюкозы (контринсулярные гормоны);
меняющие кровоток по прямым сосудам мозгового вещества и, тем самым, накопление или «вымывание» осмотически активных веществ из интерстиция (ангиотензин-П, кинины, простагландины, паратирин, вазопрессин, атриопептид).

Функциями канальцевого аппарата почки (включающего в себя проксимальный каналец, петлю нефрона, дистальный каналец и собирательные трубочки) являются:

— реабсорбция части профильтровавшихся в клубочке органических и неорганических веществ;

— секреция в просвет канальца веществ, содержащихся в крови или образующихся в клетках канальцев,

— концентрирование мочи.

Реабсорбция – это обратное всасывание различных веществ из просвета канальцев в плазму перитубулярных капилляров. Реабсорбция происходит во всех отделах канальцев нефрона, в собирательной трубочке и определяется особенностями строения канальцевого эпителия почек. Поверхность клеток проксимального извитого канальца, обращенная в его просвет имеет покрытую гликокаликсом густую щеточную каемку, которая в 40 раз увеличивает площадь контакта мембраны с канальцевой жидкостью. Под щеточной каемкой между клетками имеются проницаемые плотные соединения.

Апикальную часть плазмолеммы называют также люминальной, она обладает высокой ионной проницаемостью, содержит различные белки-переносчики и обеспечивает преимущественно пассивный транспорт различных веществ.

Базолатеральная часть клетки увеличена за счет складчатости мембраны и содержит большое число митохондрий, что определяет сосредоточенность в ней систем активного транспорта (ионных насосов).

Пороговая реабсорбция отражает зависимость всасывания вещества от его концентрации в плазме крови. Если концентрация вещества в плазме не превышает определенный пороговый уровень, то это вещество будет полностью реабсорбировано в канальцах нефрона, если же превышает – то реабсорбируется не полностью и появляется в конечной моче, что связано с максимальным насыщением переносчиков.

Первичная моча, проходя по канальцах и уборочных трубочках, перед тем как превратиться в конечную мочу, претерпевает значительные изменения. Разница состоит не только в ее количестве (с 180 л остается 1-1,5 л), но и качества. Некоторые вещества, нужные организму, полностью исчезают из мочи или их становится гораздо меньше. Происходит процесс реабсорбции . Концентрация других веществ во много раз увеличивается: они концентрируются при реабсорбции воды. Еще другие вещества, которых вообще не было в первичной мочи,
появляются в конечной. Это происходит в результате их секреции.

Процессы реабсорбции могут быть активными или пассивными. Для осуществления активного процесса необходимо, чтобы были специфические транспортные системы и энергия. Пассивные процессы происходят, как правило, без затраты энергии по законам физики и химии.

Канальцевая реабсорбция происходит во всех отделах, но ее механизм в разных частях неодинакова. Условно можно выделить С отделы : проксимальный извитой каналец, петля нефрона и дистальный извитой каналец С уборочной трубочкой.

В проксимальных извитых канальцах полностью реабсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы. В этом же отделе реабсорбируется около 2/3 воды и неорганических солей Na +, К + Са2 +, Mg2 +, Cl-, НС07, т.е. вещества, которые нужны организму для его деятельности. Механизм реабсорбции главным образом прямо или косвенно связан с реабсорбцией Na+.

Реабсорбция натрия. Большая часть Na + реабсорбируется против градиента концентрации за счет энергии АТФ. Реабсорбция Na + осуществляется в 3 этапа: перенос иона через апикальную мембрану эпителиальных клеток канальцев, транспортировки в базальной или латеральной мембраны и перенос через указанные мембраны в межклеточную жидкость и в кровь. Основной движущей силой реабсорбции является перенос Na + с помощью Na +, К +-АТФ-азы через базолатерального мембрану. Это обеспечивает постоянное отток ионов. Вследствие этого Na + по градиенту концентрации с помощью специальных образований эндоплазматического ретикулума поступает к мембранам, возвращенных в межклеточной среды. Вследствие этого постоянно действующего конвейера концентрация ионов внутри клетки и особенно вблизи апикальной мембраны становится гораздо ниже, чем с другой ее стороны, это способствует пассивному поступлению Na+ в клетку по ионному градиенту. Таким образом,
2 этапа натриевой реабсорбции клетками канальцев являются пассивными и только один, конечный, требует затрат энергии. Кроме того, часть Na + реабсорбируется пассивно по межклеточных промежутках вместе с водой.

Глюкоза. Глюкоза реабсорбируется вместе с транспортом Na+. В апикальной мембране клеток есть специальные транспортеры. Это белки с молекулярной массой 320 000, которые в начальных отделах проксимального канальца переносят друг Na + и одну молекулу глюкозы (постепенное уменьшение концентрации глюкозы в моче приводит к тому, что в следующей области канальца для переноса одной молекулы глюкозы используется уже два Na +). Движущей силой этого процесса является также электрохимический градиент Na+. На противоположной стороне клетки комплекс Na — глюкоза — переносчик распадается на три элемента . Вследствие этого освобожден переносчик возвращается на свое прежнее место и снова приобретает способность переносить новые комплексы Na + и глюкозы. В клетке концентрация глюкозы увеличивается, благодаря чему образуется градиент концентрации, который направляет его в базально-латеральных мембран клетки и обеспечивает выход в межклеточную жидкость. Отсюда глюкоза поступает в кровеносные капилляры и возвращается в общий кровоток. Апикальная мембрана не пропускает глюкозу обратно в просвет канальца. Транспортные переносчики глюкозы содержатся лишь в проксимальном отделе канальцев, поэтому глюкоза реабсорбируется только здесь.

В норме при обычном уровне глюкозы в крови, а следовательно и концентрации ее в первичной мочи, реабсорбируется вся глюкоза. Однако при повышении уровня глюкозы в крови более 10 ммоль/л (около 1,8 г/л) мощность транспортных систем становится недостаточной для реабсорбции. Первые следы нереабсорбованои глюкозы в конечной моче обнаруживаются при превышении его концентрации в крови. Чем выше концентрация глюкозы в крови, тем большее количество нереабсорбованои глюкозы. До концентрации ее 3,5 г/л это увеличение еще не прямо пропорционально, поскольку в процесс еще не включается часть транспортеров. Но, начиная с уровня 3,5 г/л , выведение глюкозы с мочой становится прямо пропорционален концентрации ее в крови. У мужчин полная нагрузка системы реабсорбции наблюдается при поступлении 2,08 ммоль/мин (375 мг/мин) глюкозы, а у женщин — 1, 68 ммоль/мин (303 мг/мин) из расчета на 1,73 м2 поверхности тела.

Аминокислоты. Реабсорбция аминокислот происходит по такому же механизму, как и реабсорбция глюкозы. Полная реабсорбция аминокислот происходит уже в начальных отделах проксимальных канальцев. Этот процесс связан с активной реабсорбцией Na + через апикальную мембрану клеток. Выявлено 4 типа транспортных систем: а) для основных б) для кислых в) для гидрофильных г) для гидрофобных аминокислот. С клетки аминокислоты пассивно по градиенту концентрации проходят через базальную мембрану в межклеточную жидкость, а оттуда — в кровь. Появление аминокислот в моче может быть следствием нарушения транспортных систем или очень высокой концентрации его в крови. В последнем случае может проявляться эффект, который по механизму напоминает глюкозурию — перегрузка транспортных систем. Иногда наблюдается конкуренция кислот одного типа за общий переносчик.

Белки. Механизм реабсорбции белков значительно отличается от механизма реабсорбции описанных соединений. Попадая в первичную мочу, небольшое количество белков в норме почти полностью реабсорбируется путем пиноцитоза. В цитоплазме клеток проксимальных канальцев белки распадаются при участии лизосомальных ферментов. Аминокислоты, которые образуются, по градиенту концентрации из клетки поступают в межклеточную жидкость, а оттуда — в кровеносные капилляры. Таким путем может реабсорбуватися до ЗО мг белка за 1 мин. При повреждении клубочков в фильтрат попадает больше белков и часть может поступать в мочу (протеинурия).

Канальцевая секреция. В современной физиологической литературе, касающейся деятельности почек, термин секреция имеет два значения. Первое из них описывает процесс переноса вещества через клетки из крови в просвет канальца в неизменном виде, что увеличивает скорость экскреции вещества почкой. Второе - выделение из клетки в кровь или в просвет канальца синтезированных в почке физиологически активных веществ (например, простагландины, брадикинин и др.) или экскретируемых веществ (например, гиппуровая кислота).

Секреция органических и неорганических веществ - один из важных процессов, обеспечивающих процесс мочеобразования. У рыб некоторых видов в почке отсутствуют клубочки. В таких случаях секреция играет ведущую роль в деятельности почки. В почках большинства других классов позвоночных, в том числе и у млекопитающих, секреция обеспечивает выделение из крови в просвет канальцев дополнительных количеств некоторых веществ, которые могут фильтроваться ив почечных клубочках.

Таким образом, секреция ускоряет выделение почкой некоторых чужеродных веществ, конечных продуктов обмена, ионов. В почке у млекопитающих секретируются органические кислоты (пенициллин, парааминогиппуровая кислота - ПАГ, диодраст, мочевая кислота), органические основания (холин, гуанидин), неорганические вещества (калий). Почка гломерулярных и агломерулярных морских костистых рыб способна к секреции ионов магния, кальция, сульфатов. Различаются места секреции разных веществ. В почке всех позвоночных местом секреции органических кислот и оснований служат клетки проксимального сегмента нефрона, особенно его прямой части, секреция калия преимущественно происходит в клетках дистального извитого канальца и собирательных трубок.

Механизм процесса секреции органических кислот. Рассмотрим этот процесс на примере выделения почкой ПАГ. После введения в кровь ПАГ ее секреция почкой нарастает и очищение от нее крови значительно превышает величину очищения крови от одновременно введенного инулина. Это означает, что ПАГ не только фильтруется в клубочках, но и помимо клубочков в просвет нефрона поступают значительные ее количества. Экспериментально было показано, что такой процесс обусловлен секрецией ПАГ из крови в просвет проксимальных отделов канальцев. В мембране клетки этого канальца, обращенной к межклеточной жидкости, имеется переносчик (котранспортер), обладающий высоким сродством к ПАГ. В присутствии ПАГ образуется комплекс переносчика с ПАГ, который перемещается в мембране и на ее внутренней поверхности распадается, высвобождая ПАГ в цитоплазму, а переносчик приобретает снова способность перемещаться к внешней поверхности мембраны и соединяться с новой молекулой ПАГ. Механизм секреции органических кислот включает ряд этапов. В базальной плазматической мембране имеется Na+, K+-АТФаза, которая удаляет из клетки ионы Na+ и способствует поступлению в клетку ионов К+. Более низкая концентрация в цитоплазме ионов Na+ позволяет поступать внутрь клетки ионам Na+ по градиенту концентрации при участии натриевых котранспортеров. Один из типов такого котранспортера способствует поступлению через базальную плазматическую мембрану α-кетоглутарата и Na+. В этой же мембране имеется анионный обменник, который удаляет из цитоплазмы α-кетоглутарат в обмен на поступающий из межклеточной жидкости в клетку парааминогиппурат (ПАГ), диодраст или некоторые иные органические кислоты. Это вещество движется по клетке в сторону люминальной мембраны и через нее проходит в просвет канальца по механизму облегченной диффузии.

Угнетение дыхания цианидами, разобщение дыхания и окислительного фосфорилирования динитрофенолом снижает и прекращает секрецию. В обычных физиологических условиях уровень секреции зависит от числа переносчиков в мембране. Секреция ПАГ возрастает пропорционально увеличению концентрации ПАГ в крови до тех пор, пока все молекулы переносчика не насытятся ПАГ. Максимальная скорость транспорта ПАГ достигается в тот момент, когда количество ПАГ, доступное для транспорта, равно количеству молекул переносчика, которые могут образовывать комплекс с ПАГ. Эта величина определяется как максимальная способность к транспорту ПАГ - Ттран. Поступившая в клетку ПАГ движется по цитоплазме к апикальной мембране и через нее специальным механизмом выделяется в просвет канальца.


Билет 15

Предыдущая3456789101112131415161718Следующая

ПОЧКИ И ИХ ФУНКЦИИ

Канальцевая реабсорбция

Начальный этап мочеобразования, приводящий к фильтрации всех низкомолекулярных компонентов плазмы крови, неизбежно должен сочетаться с существованием в почке систем, реабсорбирующих все ценные для организма вещества. В обычных условиях в почке человека за сутки образуется до 180 л фильтрата, а выделяется 1,0-1,5 л мочи, остальная жидкость всасывается в канальцах. Роль клеток различных сегментов нефрона в реабсорбции неодинакова. Проведенные на животных опыты с извлечением микропипеткой жидкости из различных участков нефрона позволили выяснить особенности реабсорбции различных веществ в разных частях почечных канальцев (рис. 12.6). В проксимальном сегменте нефрона практически полностью реабсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na+, СI-,НСОз. В последующих от делах нефрона всасываются преимущественно электролиты и вода.

Реабсорбция натрия и хлора представляет собой наиболее значительный по объему и энергетическим тратам процесс. В проксимальном канальце в результате реабсорбции большинства профильтровавшихся веществ и воды объем первичной мочи уменьшается, и в начальный отдел петли нефрона поступает около ‘/з профильтровавшейся в клубочках жидкости. Из всего количества натрия, поступившего в нефрон при фильтрации, в петле нефрона всасывается до 25 %, в дистальном извитом канальце - около 9 %, и менее 1% реабсорбируется в собирательных трубках или экскретируется с мочой.

Реабсорбция в дистальном сегменте характеризуется тем, что клетки переносят меньшее, чем в проксимальном канальце, количество ионов, но против большего градиента концентрации. Этот сегмент нефрона и собирательные трубки играют важнейшую роль в регуляции объема выделяемой мочи и концентрации в ней осмотически активных веществ (осмотическая концентрация1). Б конечной моче концентрация натрия может снижаться до 1 ммоль/л по сравнению со 140 ммоль/л в плазме крови. В дистальном канальце калий не только реабсорбируется, но и секретируется при его избытке в организме.

В проксимальном отделе нефрона реабсорбция натрия, калия, хлора и других веществ происходит через высокопроницаемую для воды мембрану стенки канальца. Напротив, в толстом восходящем отделе петли нефрона, дистальных извитых канальцах и собирательных трубках реабсорбция ионов и воды происходит через малопроницаемую для воды стенку канальца; проницаемость мембраны для воды в отдельных участках нефрона и собирательных трубках может регулироваться, а.величина проницаемости изменяется в зависимости от функционального состояния организма (факультативная реабсорбция). Под влиянием импульсов, поступающих по эфферентным нервам, и при действии биологически активных веществ реабсорбция натрия и хлора регулируется в проксимальном отделе нефрона. Это особенно отчетливо проявляется в случае увеличения объема крови и внеклеточной жидкости, когда уменьшение реабсорбции в проксимальном канальце способствует усилению экскреции ионов и воды и тем самым - восстановлению водно-солевого равновесия. В проксимальном канальце всегда сохраняется изоосмия. Стенка канальца проницаема для воды, и объем реабсорбируемой воды определяется количеством реабсорбируемых осмотически активных веществ, за которыми вода движется по осмотическому градиенту. В конечных частях дистального сегмента нефрона и собирательных трубках проницаемость стенки канальца для воды регулируется вазопрессином.

Факультативная реабсорбция воды зависит от осмотической проницаемости канальцевой стенки, величины осмотического градиента и скорости движения жидкости по канальцу.

Для характеристики всасывания различных веществ в почечных канальцах существенное значение имеет представление о пороге выведения.

Непороговые вещества выделяются при любой их концентрации в плазме крови (и соответственно в ультрафильтрате). Такими веществами являются инулин, маннитол. Порог выведения практически всех физиологически важных, ценных для организма веществ различен. Так, выделение глюкозы с мочой (глюкозурия) наступает тогда, когда ее концентрация в клубочковом фильтрате (и в плазме крови) превышает 10 ммоль/л. Физиологический смысл этого явления будет раскрыт при описании механизма реабсорбции.

Механизмы канальцевой реабсорбции. Обратное всасывание различных веществ в канальцах обеспечивается активным и пассивным транспортом. Если вещество реабсорбируется против электрохимического и концентрационного градиентов, процесс называется активным транспортом. Различают два вида активного транспорта - первично-активный и вторично-активный. Первично-активным транспорт называется в том случае, когда происходит перенос вещества против электрохимического градиента за счет энергии клеточного метаболизма. Примером служит транспорт ионов Na+, который происходит при участии фермента Na+, К+-АТФазы, использующей энергию АТФ. Вторично-активным называется перенос вещества против концентрационного градиента, но без затраты энергии клетки непосредственно на этот процесс; так реабсорбируются глюкоза, аминокислоты. Из просвета канальца эти органические вещества поступают в клетки проксимального канальца с помощью специального переносчика, который обязательно должен присоединить ион Na+. Этот комплекс (переносчик + органическое вещество + Na+) способствует перемещению вещества через мембрану щеточной каемки и его поступлению внутрь клетки. Движущей силой переноса этих веществ через апикальную плазматическую мембрану служит меньшая по сравнению с просветом канальца концентрация натрия в цитоплазме клетки. Градиент концентрации натрия обусловлен непрестанным активным выведением натрия из клетки во внеклеточную жидкость с помощью Na+, К+-АТФазы, локализованной в латеральных и базальной мембранах клетки.

Реабсорбция воды, хлора и некоторых других ионов, мочевины осуществляется с помощью пассивного транспорта - по электрохимическому, концентрационному или осмотическому градиенту. Примером пассивного транспорта является реабсорбция в дистальном извитом канальце хлора по электрохимическому градиенту, создаваемому активным транспортом натрия. По осмотическому градиенту транспортируется вода, причем скорость ее всасывания зависит от осмотической проницаемости стенки канальца и разности концентрации осмотически активных веществ по обеим сторонам его стенки. В содержимом проксимального канальца вследствие всасывания воды и растворенных в ней веществ растет концентрация мочевины, небольшое количество которой по концентрационному градиенту реабсорбируется в кровь.

Достижения в области молекулярной биологии позволили установить строение молекул ионных и водных каналов (аквапоринов) рецепторов, аутакоидов и гормонов и тем самым проникнуть в сущность некоторых клеточных механизмов, обеспечивающих транспорт веществ через стенку канальца. Различны свойства клеток разных отделов нефрона, неодинаковы свойства цитоплазматической мембраны в одной и той же клетке. Апикальная мембрана клетки, обращенная в просвет канальца, имеет иные характеристики, чем ее базальная и боковые мембраны, омываемые межклеточной жидкостью и соприкасающиеся с кровеносным капилляром. Вследствие этого апикальная и базальная плазматические мембраны участвуют в транспорте веществ по-разному; специфично и действие биологически активных веществ на ту и другую мембраны.

Клеточный механизм реабсорбции ионов рассмотрим на примере Na+. В проксимальном канальце нефрона всасывание Na+ в кровь происходит в результате ряда процессов, один из которых - активный транспорт Na+ из просвета канальца, другой - пассивная реабсорбция Na+ вслед за активно транспортируемыми в кровь как ионами гидрокарбоната, так и С1-. При введении одного микроэлектрода в просвет канальцев, а второго - в околоканальцевую жидкость было выявлено, что разность потенциалов между наружной и внутренней поверхностью стенки проксимального канальца оказалась очень небольшой - около 1,3 мВ, в области дистального канальца она может достигать- 60 мВ (рис.12.7). Просвет обоих канальцев электроотрицателен, а в крови (следовательно, и во внеклеточной жидкости), концентрация Na+ выше, чем в жидкости, находящейся в просвете этих канальцев, поэтому реабсорбция Na+ осуществляется активно против градиента электрохимического потенциала. При этом из просвета канальца Na+ входит в клетку по натриевому каналу или при участии переносчика. Внутренняя часть клетки запряжена отрицательно, и положительно заряженный Na+ поступает в клетку по градиенту потенциала, движется в сторону базальной плазматической мембраны, через которую натриевым насосом выбрасывается в межклеточную жидкость; градиент потенциала на этой мембране достигает 70-90 мВ.

Имеются вещества, которые могут влиять на отдельные элементы системы реабсорбции Na+. Так, натриевый канал в мембране клетки дистального канальца и собирательной трубки блокируется амилоридом и триамтереном, в результате чего Na+ не может войти в канал. Б клетках имеется несколько типов ионных насосов.

Канальцевая реабсорбция и ее регуляция

Один из них представляет собой Na+, К+-АТФазу. Этот фермент находится в базальной и латеральных мембранах клетки и обеспечивает транспорт Na+ из клетки в кровь и поступление из крови в клетку К+. Фермент угнетается сердечными гликозидами, например строфантином, уабаином. В реабсорбции гидрокарбоната важная роль принадлежит ферменту карбоангидразе, ингибитором которого является ацетазоламид -он прекращает реабсорбцию гидрокарбоната, который экскретируется с мочой.

Фильтруемая глюкоза практически полностью реабсорбируется клетками проксимального канальца, и в норме за сутки с мочой выделяется незначительное ее количество (не более 130 мг). Процесс обратного всасывания глюкозы осуществляется против высокого концентрационного градиента и является вторично-активным. В апикальной (люминальной) мембране клетки глюкоза соединяется с переносчиком, который должен присоединить также Na+, после чего комплекс транспортируется через апикальную мембрану, т. е. в цитоплазму поступают глюкоза и Na+. Апикальная мембрана отличается высокой селективностью и односторонней проницаемостью и не пропускает ни глюкозу, ни Na+ обратно из клетки в просвет канальца. Эти вещества движутся к основанию клетки по градиенту концентрации. Перенос глюкозы из клетки в кровь через базальную плазматическую мембрану носит характер облегченной диффузии, a Na+, как уже отмечалось выше, удаляется натриевым насосом, находящимся в этой мембране.

Аминокислоты почти полностью реабсорбируются клетками проксимального канальца. Имеется не менее 4 систем транспорта аминокислот из просвета канальца в кровь, осуществляющих реабсорбцию нейтральных, двуосновных, дикарбоксильных аминокислот и иминокислот. Каждая из этих систем обеспечивает всасывание ряда аминокислот одной группы. Так, система реабсорбции двуосновных аминокислот участвует во всасывании лизина, аргинина, орнитина и, возможно, цистина. При введении в кровь избытка одной из этих аминокислот начинается усиленная экскреция почкой аминокислот только данной группы. Системы транспорта отдельных групп аминокислот контролируются раздельными генетическими механизмами. Описаны наследственные заболевания, одним из проявлений которых служит увеличенная экскреция определенных групп аминокислот (аминоацидурия).

Выделение с мочой слабых кислот и оснований зависит от их клубочковой фильтрации, процесса реабсорбции или секреции. Процесс выведения этих веществ во многом определяется «неионной диффузией», влияние которой особенно сказывается в дистальных канальцах и собирательных трубках. Слабые кислоты и основания могут существовать в зависимости от рН среды в двух формах - неионизированной и ионизированной. Клеточные мембраны более проницаемы для неионизированных веществ. Многие слабые кислоты с большей скоростью экскретируются с щелочной мочой, а слабые основания, напротив, - с кислой. Степень ионизации оснований увеличивается в кислой среде, но уменьшается в щелочной. В неионизированном состоянии эти вещества через липиды мембран проникают в клетки, а затем в плазму крови, т. е. они реабсорбируются. Если значение рН канальцевой жидкости сдвинуто в кислую сторону, то основания ионизируются, плохо всасываются и экскретируются с мочой. Никотин - слабое основание, при рН 8,1 ионизируется 50 %, в 3-4 раза быстрее экскретируется с кислой (рН около 5), чем с щелочной (рН 7,8) мочой. Процесс «неионной диффузии» влияет на выделение почками слабых оснований и кислот, барбитуратов и других лекарственных веществ.

Небольшое количество профильтровавшегося в клубочках белка реабсорбируется клетками проксимальных канальцев. Выделение белков с мочой в норме составляет не более 20-75 мг в сутки, а при заболеваниях почек оно может возрастать до 50 г в сутки. Увеличение выделения белков с мочой (протеинурия) может быть обусловлено нарушением их реабсорбции либо увеличением фильтрации.

В отличие от реабсорбции электролитов, глюкозы и аминокислот, которые, проникнув через апикальную мембрану, в неизмененном виде достигают базальной плазматической мембраны и транспортируются в кровь, реабсорбция белка обеспечивается принципиально иным механизмом. Белок попадает в клетку с помощью пиноцитоза. Молекулы профильтровавшегося белка адсорбируются на поверхности апикальной мембраны клетки, при этом мембрана участвует в образовании пиноцитозной вакуоли. Эта вакуоль движется в сторону базальной части клетки. В околоядерной области, где локализован пластинчатый комплекс (аппарат Гольджи), вакуоли могут сливаться с лизосомами, обладающими высокой активностью ряда ферментов. В лизосомах захваченные белки расщепляются и образовавшиеся аминокислоты, дипептиды удаляются в кровь через базальную плазматическую мембрану. Следует, однако, подчеркнуть, что не все белки подвергаются гидролизу в процессе транспорта и часть их переносится в кровь в неизмененном виде.

Определение величины реабсорбции в канальцах почки. Обратное всасывание веществ, или, иными словами, их транспорт (Т) из просвета канальцев в тканевую (межклеточную) жидкость и в кровь, при реабсорбции R (TRX) определяется по разности между количеством вещества X (F∙Px∙fx), профильтровавшегося в клубочках, и количеством вещества, выделенного с мочой (UX ∙V).

TRX =F∙px.fx ─Ux∙V,

где F - объем клубочковой фильтрации, fx - фракция вещества X, не связанная с белками в плазме по отношению к его об щей концентрации в плазме крови, Р - концентрация вещества в плазме крови, U - концентрация вещества в моче.

По приведенной формуле рассчитывают абсолютное количество реабсорбируемого вещества. При вычислении относительной реаб-сорбции (% R) определяют долю вещества, подвергшуюся обратному всасыванию по отношению к количеству вещества, профильтровавшегося в клубочках:

% R= (1 - EFX)∙100.

Для оценки реабсорбционной способности клеток проксимальных канальцев важное значение имеет определение максимальной величины транспорта глюкозы (TmG). Эту величину измеряют при полном насыщении глюкозой системы ее канальцевого транспорта (см. рис. 12.5). Для этого вливают в кровь раствор глюкозы и тем самым повышают ее концентрацию в клубочковом фильтрате до тех пор, пока значительное количество глюкозы не начнет выделяться с мочой:

TmG=F∙PG-UG∙ V,

где F - клубочковая фильтрация, РG - концентрация глюкозы в плазме крови, a UG - концентрация глюкозы в моче; Тт - максимальный канальцевый транспорт изучаемого вещества. Величина ТmG характеризует полную загрузку системы транспорта глюкозы; у мужчин эта величина равна 375 мг/мин, а у женщин - 303 мг/мин при расчете на 1,73 м2 поверхности тела.

Канальцевая реабсорбция

Первичная моча превращается в конечную благодаря процессам, которые происходят в почечных канальцах и собирательных бочках. В почке человека за сутки образуется 150 — 180 л фильма, или первичной мочи, а выделяется 1,0-1,5 л мочи. Остальная жидкость всасывается в канальцах и собирательных трубочках.

Канальцевая реабсорбция — это процесс обратного всасывания воды и веществ из содержащейся в просвете канальцев мочи в лимфу и кровь. Основной смысл реабсорбции состоит в том, чтобы сохранить организму все жизненно важные вещества в необходимых количествах. Обратное всасывание происходит во всех отделах нефрона. Основная масса молекул реабсорбируется в проксимальном отделе нефрона. Здесь практически полностью абсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na+, C1-, HCO3- и многие другие вещества.

Схема канальцевой реабсорбации

В петле Генле, дистальном отделе канальца и собирательных трубочках всасываются электролиты и вода. Ранее считали, что реабсорбция в проксимальной части канальца является обязательной и нерегулируемой. В настоящее время доказано, что она регулируется как нервными, так и гуморальными факторами.

Обратное всасывание различных веществ в канальцах может происходить пассивно и активно. Пассивный транспорт происходит без затраты энергии по электрохимическому, концентрационному или осмотическому градиентам. С помощью пассивного транспорта осуществляется реабсорбция воды, хлора, мочевины.

Активным транспортом называют перенос веществ против электрохимического и концентрационного градиентов. Причем различают первично-активный и вторично-активный транспорт. Первично-активный транспорт происходит с затратой энергии клетки. Примером служит перенос ионов Na+ с помощью фермента Na+, K+ — АТФазы, использующей энергию АТФ. При вторично-активном транспорте перенос вещества осуществляется за счет энергии транспорта другого вещества. Механизмом вторично-активного транспорта реабсорбируются глюкоза и аминокислоты.

Глюкоза. Она поступает из просвета канальца в клетки проксимального канальца с помощью специального переносчика, который должен обязательно присоединить ион Ма4′. Перемещение этого комплекса внутрь клетки осуществляется пассивно по электрохимическому и концентрационному градиентам для ионов Na+. Низкая концентрация натрия в клетке, создающая градиент его концентрации между наружной и внутриклеточной средой, обеспечивается работой натрий-калиевого насоса базальной мембраны.

В клетке этот комплекс распадается на составные компоненты. Внутри почечного эпителия создается высокая концентрация глюкозы, поэтому в дальнейшем по градиенту концентрации глюкоза переходит в интерстициальную ткань. Этот процесс осуществляется с участием переносчика за счет облегченной диффузии. Далее глюкоза уходит в кровоток. В норме при обычной концентрации глюкозы в крови и, соответственно, в первичной моче вся глюкоза реабсорбируется. При избытке глюкозы в крови, а значит, в первичной моче может произойти максимальная загрузка канальцевых систем транспорта, т.е. всех молекул-переносчиков.

В этом случае глюкоза больше не сможет реабсорбироваться и появится в конечной моче (глюкозурия). Эта ситуация характеризуется понятием " максимальный канальцевый транспорт" (Тм). Величине максимального канальцевого транспорта соответствует старое понятие " почечный порог выведения". Для глюкозы эта величина составляет 10 ммоль/л.

Вещества, реабсорбция которых не зависит от их концентрации в плазме крови, называются непороговыми. К ним относятся вещества, которые или вообще не реабсорбируются, (инулин, маннитол) или мало реабсорбируются и выделяются с мочой пропорционально накоплению их в крови (сульфаты).

Аминокислоты. Реабсорбция аминокислот происходит также по механизму сопряженного с Na+ транспорта. Профильтровавшиеся в клубочках аминокислоты на 90% реабсорбируются клетками проксимального канальца почки. Этот процесс осуществляется с помощью вторично-активного транспорта, т.е. энергия идет на работу натриевого насоса. Выделяют не менее 4 транспортных систем для переноса различных аминокислот (нейтральных, двуосновных, дикарбоксильных и аминокислот). Эти же системы транспорта действуют и в кишечнике для всасывания аминокислот.

Канальцевая реабсорбция

Описаны генетические дефекты, когда определенные аминокислоты не реабсорбируются и не всасываются в кишечнике.

Белок. В норме небольшое количество белка попадает в фильтрат и реабсорбируется. Процесс реабсорбции белка осуществляется с помощью пиноцитоза. Эпителий почечного канальца активно захватывает белок. Войдя в клетку, белок подвергается гидролизу со стороны ферментов лизосом и превращается в аминокислоты. Не все белки подвергаются гидролизу, часть их переходит в кровь в неизмененном виде. Этот процесс активный и требует энергии. За сутки с конечной мочой уходит не более 20-75 мг белка. Появление белка в моче носит название протеинурии. Протеинурия может быть и в физиологических условиях, пример, после тяжелой мышечной работы. В основном протеинурия имеет место в патологии при нефритах, нефропатиях, при миеломной болезни.

Мочевина. Она играет важную роль в механизмах концентрирования мочи, свободно фильтруется в клубочках. В проксимальном канальце часть мочевины пассивно реабсорбируется за счет градиента концентрации, который возникает вследствие концентрирования мочи. Остальная часть мочевины доходит до собирательных трубочек. В собирательных трубочках под влиянием АДГ происходит реабсорбция воды и концентрация мочевины повышается. АДГ усиливает проницаемость стенки и для мочевины, и она переходит в мозговое вещество почки, создавая здесь примерно 50% осмотического давления.

Из интерстиция по концентрационному градиенту мочевина диффундирует в петлю Генле и вновь поступает в дистальные канальцы и собирательные трубочки. Таким образом совершается внутрипочечный круговорот мочевины. В случае водного диуреза всасывание воды в дистальном отделе нефрона прекращается, а мочевины выводится больше. Таким образом ее экскреция зависит от диуреза.

Слабые органические кислоты и основания. Реабсорбция слабых кислот и оснований зависит от того, в какой форме они находятся — в ионизированной или неионизированной. Слабые основания и кислоты в ионизированном состоянии не реабсорбируются и выводятся с мочой. Степень ионизации оснований увеличивается в кислой среде, поэтому они с большей скоростью экскретируются с кислой мочой, слабые кислоты, напротив, быстрее выводятся с щелочной мочой.

Это имеет большое значение, так как многие лекарственные вещества являются слабыми основаниями или слабыми кислотами. Поэтому при отравлении ацетилсалициловой кислотой или фенобарбиталом (слабыми кислотами) необходимо вводить щелочные растворы (NaHCO3), для того чтобы перевести эти кислоты в ионизированное состояние, тем самым способствуя их быстрому выведению из организма. Для быстрой экскреции слабых оснований необходимо вводить в кровь кислые продукты для закисления мочи.

Вода и электролиты. Вода реабсорбируется во всех отделах нефрона. В проксимальных извитых канальцах реабсорбируется около 2/3 всей воды. Около 15% реабсорбируется в петле Генле и 15% — в дистальных извитых канальцах и собирательных трубочках. Вода реабсорбируется пассивно за счет транспорта осмотически активных веществ: глюкозы, аминокислот, белков, ионов натрия, калия, кальция, хлора. При снижении реабсорбции осмотически активных веществ уменьшается и реабсорбция воды. Наличие глюкозы в конечной моче ведет к увеличению диуреза (полиурии).

Основным ионом, обеспечивающим пассивное всасывание воды, является натрий. Натрий, как указывалось выше, также необходим для транспорта глюкозы и аминокислот. Кроме Того, он играет важную роль в создании осмотически активной среды в интерстиции мозгового слоя почки, благодаря чему происходит концентрирование мочи. Реабсорбция натрия совершается во всех отделах нефрона. Около 65% ионов натрия реабсорбируется в проксимальных канальцах, 25% — в петле нефрона, 9% — в дистальном извитом канальце и 1% — в собирательных трубочках.

Поступление натрия из первичной мочи через апикальную мембрану внутрь клетки канальцевого эпителия происходит пассивно по электрохимическому и концентрационному градиентам. Выведение натрия из клетки через базолатеральные мембраны осуществляется активно с помощью Na+, K+ — АТФазы. Так как энергия клеточного метаболизма расходуется на перенос натрия, транспорт его является первично-активным. Транспорт натрия в клетку может происходить за счет разных механизмов. Один из них — это обмен Na+ на Н+ (противоточный транспорт, или антипорт). В этом случае ион натрия переносится внутрь клетки, а ион водорода — наружу.

Другой путь переноса натрия в клетку осуществляется с участием аминокислот, глюкозы. Это так называемый котранспорт, или симпорт. Частично реабсорбция натрия связана с секрецией калия.

Сердечные гликозиды (строфантин К, оубаин) способны угнетать фермент Na+, К+ — АТФазу, обеспечивающую перенос натрия из клетки в кровь и транспорт калия из крови в клетку.

Большое значение в механизмах реабсорбции воды и ионов натрия, а также концентрирования мочи имеет работа так называемой поворотно-противоточной множительной системы.

Поворотно-противоточная система представлена параллельно расположенными коленами петли Генле и собирательной трубочкой, по которым жидкость движется в разных направлениях (противоточно). Эпителий нисходящего отдела петли пропускает воду, а эпителий восходящего колена непроницаем для воды, но способен активно переносить ионы натрия в тканевую жидкость, а через нее обратно в кровь. В проксимальном отделе происходит всасывание натрия и воды в эквивалентных количествах и моча здесь изотонична плазме крови.

В нисходящем отделе петли нефрона реабсорбируется вода и моча становится более концентрированной (гипертонической). Отдача воды происходит пассивно за счет того, что в восходящем отделе одновременно осуществляется активная реабсорбция ионов натрия. Поступая в тканевую жидкость, ионы натрия повышают в ней осмотическое давление, тем самым способствуя притягиванию в тканевую жидкость воды из нисходящего отдела. В то же время повышение концентрации мочи в петле нефрона за счет реабсорбции воды облегчает переход натрия из мочи в тканевую жидкость. Так как в восходящем отделе петли Генле реабсорбируется натрий, моча становится гипотоничной.

Поступая далее в собирательные трубочки, представляющие собой третье колено противоточной системы, моча может сильно концентрироваться, если действует АДГ, повышающий проницаемость стенок для воды. В данном случае по мере продвижения по собирательным трубочкам в глубь мозгового вещества все больше и больше воды выходит в межтканевую жидкость, осмотическое давление которой повышено вследствие содержания в ней большого количества Na" 1" и мочевины, и моча становится все более концентрированной.

При поступлении больших количеств воды в организм почки, наоборот, выделяют большие объемы гипотонической мочи.

Канальцевая реабсорбция и секреция веществ в нефроне.

КАНАЛЬЦЕВАЯ РЕАБСОРБЦИЯ или обратное всасывание в кровь, содержащихся в первичной моче, воды, солей, органических веществ (глюкозы, белка, аминокислот, витаминов).

Результатом является уменьшение первичной мочи (на 70%), полное обратное всасывание в кровь полезных для метаболизма веществ (аминокислот, глюкозы, многих витаминов), частичное всасывание воды и ионов Na, Cl, K, Ca, выделение из крови в мочу токсических продуктов метаболизма (мочевины, мочевой кислоты, аммиака, креатинина, сульфатов, фосфатов).

Всасывание основных веществ осуществляется при помощи механизмов активного транспорта, диффузии и облегченной диффузии.

Например:

Главный ион, определяющий осмотическое давление, и, следовательно, реабсорбцию воды, Na+ входит в эпителиальные клетки пассивно, по градиенту концентрации, а затем выбрасывается с другой стороны клетки Na+-К+-АТФ-азой.

Ионы К+ реабсорбируются активно на апикальной мембране и затем выходят в кровь за счет диффузии.

В проксимальных извитых канальцах реабсорбируется 70% воды и ионов.

Реабсорбция катионов (Na+, K+, Ca2+, Mg2+) происходит против градиента концентраций, активно (с использованием энергии АТФ).

Отрицательно заряженные анионы притягиваются положительно заряженными катионами, и за счет электростатических сил поступают из мочи в кровь пассивно (Cl- и HCO3- вслед за Na+ и K+; SO42- и PO42- за Ca2+ и Mg2+), вода всасывается пассивно вслед за ионами по осмотическому градиенту.

Механизмы реабсорбции Ca2+, Mg2+, SO4-, PO4- сходны с механизмами реабсорбции Na+, K+ и Cl-.

Вещества могут переносятся в цитоплазму почечной эпителиальной клетки переносчиками совместно с ионами Na+.

При этом из эпителиальной клетки в кровь они поступают с помощью диффузии по градиенту концентрации.

При определенной концентрации веществ крови (порог выведения) эти вещества (пороговые) не будут полностью реабсорбироваться, и часть профильтровавшихся веществ окажется в конечной моче.

К пороговым веществам относится глюкоза, которая в норме (4,6-7,2 ммоль/л в крови) фильтруется, а затем полностью реабсорбируется.

При увеличении ее концентрации в крови до 10,8 ммоль/л часть глюкозы не будет успевать реабсорбироваться.

Она выделяется с мочой из организма и возникает глюкозурия.

РЕАБСОРБЦИЯ в различных участках нефрона неодинакова.

В ПРОКСИМАЛЬНОМ ОТДЕЛЕ реабсорбируются 40-45 % воды, натрия, бикарбонаты, хлор, аминокислоты, глюкоза, витамины, белки, микроэлементы к концу отдела — остается 1/3 ультрафильтрата с таким же осмотическим давлением как в плазме.

В ПЕТЛЕ ГЕНЛЕ реабсорбируется 25-28% воды, до 25% натрия, а также ионы хлора, калия, кальция, магния

В ДИСТАЛЬНОМ ОТДЕЛЕ — 10% воды, около 9% натрия, калия.

В СОБИРАТЕЛЬНЫХ ТРУБОЧКАХ — 20% воды, менее 1% натрия.

КАНАЛЬЦЕВАЯ СЕКРЕЦИЯ проявляется ВЫДЕЛЕНИЕМ из крови в ПРОСВЕТ КАНАЛЬЦЕВ продуктов обмена и чужеродных веществ

Канальцевая секреция является результатом активной деятельности ЭПИТЕЛИЯ почечных канальцев.

Она осуществляется против концентрационного или электрохимического градиента и позволяет быстро экскретировать органические основания и ионы, ЭПИТЕЛИАЛЬНЫЕ КЛЕТКИ секретируют из КРОВИ Холин, парааминогиппуровую кислоту, Видоизмененные молекулы лекарственных веществ и поглощают из ПЕРВИЧНОЙ МОЧИ Глютамин.

С помощью фермента глютаминазы РАСЩЕПЛЯЮТ глютамин на ГЛЮТАМИНОВУЮ КИСЛОТУ и АММИАК.

АММИАК выделяется в мочу, который выносится из организма в виде АММОНИЙНЫХ СОЛЕЙ.

Там же расщепляется Угольная кислота ферментом КАРБОАНГИДРАЗОЙ.

Как проходит процесс реабсорбции в почках

Ионы HСО3- всасываются в кровь (за счет электростатического притяжения их Na+ и К+).

Ионы H+ секретируются в мочу, с которой удаляются.

Этим объясняется кислая реакция конечной мочи (pH=4,5-6,5).

Этот механизм ПРЕДОХРАНЯЕТ организм от ЗАКИСЛЕНИЯ.

ЛОКАЛИЗАЦИЯ СЕКРЕЦИИ ВЕЩЕСТВ В НЕФРОНЕ различна

В ПРОКСИМАЛЬНОМ ОТДЕЛЕ секретируются Ионы водорода и Аммиак. Причем в извитой части секретируются органические основания:

Холин, Серотонин, Допамин, Хинин, морфин.

В прямой части – органические кислоты: парааминогиппуровая, Диодраст, Пенициллин, Мочевая кислота.

В ДИСТАЛЬНОМ ОТДЕЛЕ – парааминогиппуровая кислота, Аммиак, Ионы H+ и К+.

ЛЕКАРСТВЕННЫЕ ВЕЩЕСТВА выводятся из организма с помощью КЛУБОЧКОВОЙ ФИЛЬТРАЦИИ (левомицетин, стрептомицин, тетрациклин, неомицин, канамицин и др. антибиотики).

С помощью КАНАЛЬЦЕВОЙ СЕКРЕЦИИ выводится пенициллин (на 80-90 %).

при ПОРАЖЕНИИ различных отделов НЕФРОНА ряд ЛЕКАРСТВЕННЫХ соединений длительно циркулируют в крови и могут не выделяться из организма.

В этих случаях НЕОБХОДИМО изменение дозировок ЛЕКАРСТВЕННЫХ веществ.

Что еще почитать